
Journal of Microscopy, Vol. 257, Issue 2 2015, pp. 133–141 doi: 10.1111/jmi.12192

Received 10 December 2013; accepted 7 October 2014

Analysis of menisci formed on cones for single field of view parasite
egg microscopy

I . R . C O O K E ∗, C . J . L A I N G†, L . V . W H I T E‡, S . J . W A K E S‡ & S . J . S O W E R B Y §,‖
∗Department of Chemistry, University of Otago, Dunedin, New Zealand

†Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand

‡Department of Applied Sciences, University of Otago, Dunedin, New Zealand

§Department of Biochemistry, University of Otago, Dunedin, New Zealand

‖Centre for Bioengineering and Nanomedicine, University of Otago, Dunedin, New Zealand

Key words. Meniscus, microscopy, parasite.

Summary

Parasite ova caused to accumulate in a single microscopic field
simplifies monitoring soil-transmitted helminthiasis by opti-
cal microscopy. Here we demonstrate new egg-accumulating
geometries based on annular menisci formed on the surface
of a wetted cone. Fluidic features extracted from profile im-
ages of the system provided mathematical representations of
the meniscus gradient that were compared quantitatively to
numerical solutions of an axisymmetric Young–Laplace equa-
tion. Our results show that the governing dynamics of these
systems is dominated by the surface tension of the fluid. These
image analysis and mathematical tools provide simple quan-
titative methods for system analysis and optimization.

Introduction

Light microscopy remains the most widely used and ver-
satile method for monitoring gastrointestinal parasitism in
veterinary and human health. However, determining the pres-
ence of helminth ova (20–200 μm) in stool is confounded by
the complex colloidal properties of faeces and deep staining
due to chromophores. These challenges have traditionally
been overcome by dispersing faecal material thinly across a
flat transparent surface to enable sufficient light penetration
for trans-illumination of the ova and to present the sample in a
common focal plane for imaging (Thienpont et al., 1979; Ash
& Orihel, 2007).

Traditional optics used to visualize parasite eggs employ
a 4× objective lens combined with a 10× eyepiece yielding
40× magnification. In this configuration, the microscopic
field of view (FOV) is typically a circle of diameter 4.45 mm
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(area = 15.55 mm2). However, for the close inspection often
required for egg discrimination, a 10× objective lens is used
to increase the magnification to 100×, but reduces the FOV
to a circle of diameter 1.78 mm (area = 2.49 mm2).

For the optical detection of eggs in stool, a number of
approaches have been developed to prepare the faecal-derived
material for microscopic inspection. The Kato–Katz method
(Katz et al., 1972), the semiquantitative human diagnostic
standard of the World Health Organization (Ash et al., 1994),
employs a cardboard sheet incorporating a hole, which
acts as a simple former to position a fixed amount of stool
(approximately 43.7 mg) on a microscope slide. The sample
is caused to spread over an area up to 25 mm in diameter
(area = 490 mm2), which represents 31 and 197 nonover-
lapping FOV at 40× and 100× magnification, respectively.

Fluidizing stool by the addition of liquid and mechanical ho-
mogenization provides a means to randomize the distribution
of eggs and permits their separation and concentration by
filtration, sedimentation and flotation (Thienpont et al., 1979;
Ash & Orihel, 2007). Flotation of parasite ova is commonly
used in coprological analysis and a number of flotation fluids
have been developed (Thienpont et al., 1979; Ash & Orihel,
2007; Cringoli et al., 2010).

The McMaster method is a widely utilized veterinary
parasite diagnostic (MAFF, 1986; Thienpont et al., 1979;
Cringoli et al., 2004) recently adapted for human application
(Levecke et al., 2011; Albonico et al., 2012). It comprises a
pair of identical volumetric fluid chambers that facilitates the
presentation of fluidized faecal samples thin enough for trans-
illumination. Stool homogenized in dense fluids causes the
eggs to float to the underside of a transparent window where
buoyancy pins floating objects in a common focal plane for
imaging. Gridlines that correspond to a total searchable area
of 100 mm2 help facilitate systematic examination of 0.15 mL
of captured fluid per chamber. The volume can be increased to

C© 2014 The Authors
Journal of Microscopy C© 2014 Royal Microscopical Society



1 3 4 I . R . C O O K E E T A L .

0.5 mL but comes with a concomitant increase in the search
area to 324 mm2 (Cringoli et al., 2004; Presland et al., 2005).
Analysis of the paired chambers is typically used to confirm
sampling consistency but doubles the microscopy burden.

The FLOTAC apparatus, like the McMaster slide, facilitates
the examination of grid-lined areas of 324 mm2, following
active mechanical capture of the eggs floated atop of paired
5 mL chambers subjected to centrifugation-enhanced flotation
(Cringoli et al., 2010).

Systematic examination of faecal-derived material is nor-
mally done in real time (synchronous) by skilled technicians
operating the manual translation stage of a compound opti-
cal microscope. However, the necessary colocalization of ex-
pertise and technology limits the widespread monitoring of
helminthiasis.

Single FOV imaging eliminates the need for lateral trans-
lation and offers a number of advantages including: raw
digital electronic capture, computer assisted analysis, remote
location processing, and the ability to archive and audit data
(Mes et al., 2007; Sowerby et al., 2011; White et al., 2013).

Mes et al. (2007) first showed the elegant use of curved fluid
interfaces (menisci) to facilitate single FOV imaging of para-
site eggs caused to accumulate at an oil–water interface. The
curvatures of axisymmetric menisci generated about a hy-
drophilic glass rod with a hemispherical terminus were used
in fluid cells designed to orient interfacial pollen grains and ne-
matode eggs for microscopic analysis (Sowerby et al., 2011).
Buoyant particles quantitatively introduced to the fluid cell
accumulated about the apex of the rod. The rod itself had
the effect of stabilizing the meniscus, enabled particle beach-
ing about the spherical rod cap and provided a conduit for
trans-illumination of the beached particles. Top view images
of the trans-illuminated rod were magnified to occupy a single
microscopic FOV.

These first empirical studies of particle-accumulating fluid
cells (Sowerby et al., 2011; White et al., 2013) resulted in
a meniscus generating structure that comprised a 3-mm-
diameter rod concentrically located within an 8-mm well.
Although the 3 mm diameter of the rod corresponded to a
maximum single FOV of 7.07 mm2, it was found that the hemi-
spherical terminus resulted in a large unwetted central portion
incorporating the apex of the hemisphere. This reduced the
effective usable FOV and the operational area in system was
limited to a thin annulus around the tapering end of the rod.
Furthermore, the grinding of hemispherical termini is expen-
sive and is confronted by manufacturing variance (White
et al., 2013).

In this paper, we address these issues by extending the single
FOV microscopy approach to new configurations of the fluid
cell that introduce rods with conical termini (Fig. 1). Rods
with conical ends are simple geometries to manufacture and
could be configured with different open angles and at different
heights within the fluid cell. Using one configuration of fluid
cell, we extract the meniscus gradient directly from profile

(A)

(B)

(C)

Fig. 1. Schematic of the particle-accumulating fluid cell. (A) Top view
showing: rod (r), well (W) and well edge (We). (B and C) Transverse cross-
sections of A along the line A-A showing: the meniscus (m), cone open
angle (OA), rod diameter (rd), rod height above the well edge (rh), well
diameter (Wd), well depth (Wh), the triple point (tp), contact angle on
the cone surface (CA), the unwetted radius (u), the meniscus rise height
(hm) and the minimum dimension between the base of the cone and the
meniscus (Gm). A coordinate system based on the width (x) from the
centre of the rod vs. height (y) from the well edge is shown in C.

images of the system and compare the observed gradients
quantitatively with modelled gradients. Here, the goal is to
develop a simple approach to characterize the key attributes
governing meniscus-based fluid cell geometries to aid in their
further optimization for diagnostic parasite microscopy.

Understanding of the potential utility of menisci for
coprological parasite microscopy starts with the fundamen-
tal interfacial behaviour of buoyant particles. Meniscus
curvature generates applied fields (Cavallaro et al., 2011)
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with a propensity to passively orient floating colloidal
materials (Hu & Bush, 2005; Vassileva et al., 2005; Vella &
Mahadevan, 2005; Wurger, 2006; Malaquin et al., 2007; Yu
et al., 2007; Boneva et al., 2009; Rivron et al., 2009; Danov
& Kralchevsky, 2010; Dominguez et al., 2010; Cavallaro
et al., 2011; Botto et al., 2012). Buoyant particles cluster at
interfaces due to particle-induced curvature of the meniscus
between particles (Wurger, 2006; Lewandowski et al.,
2008; Danov & Kralchevsky, 2010). Capillary rise at the
walls inside liquid-containing vessels generates menisci that
facilitate circumferential particle accumulation often called
the ‘cheerios effect’ (Vella & Mahadevan, 2005). Similar
interfacial structures at pond edges permit meniscus climbing
by waterborne insects (Hu & Bush, 2005; Yu et al., 2007). The
motion of particles trapped at curved interfaces is complex and
dependent on many factors including the interplay between
meniscus curvature and shape (Cavallaro et al., 2011; Botto
et al., 2012) and between the interfacial gradient and particle
buoyancy (Vassileva et al., 2005).

The underpinning physical chemistry that controls menis-
cus curvature and particle accumulation has its origins in the
cohesive and adhesive molecular–scale interactions between
fluids and solids. Partial wetting of a solid with a liquid results
in a triple point phase boundary between the solid, liquid and
vapour phases. A characteristic contact angle

(
θγ

)
between

the liquid–vapour and the solid–liquid interfaces arises from
adhesive molecular and topological characteristics of the con-
tacting materials. Young’s equation expresses the relationship
between the relevant interfacial tensions and θγ by

cos θγ = γsv − γsl

γlv
,

where γlv, γsv and γsl refer to the liquid–vapour, solid–vapour
and solid–liquid interfacial tensions, respectively (Young,
1805).

The natural curvature of static fluids at the liquid–vapour
boundary is due to shape adjustment of the liquid volume
to minimize surface area and the excess energy caused by
unbalanced cohesive molecular arrangements at the interface
(de Gennes et al., 2010).

The interplay between γlv and gravitational acceleration (g)
gives rise to the capillary length (lc), which is given by

lc =
√

γlv

�ρg
,

where �ρ is the difference in density between the liquid and
the vapour fluids. The lc simply describes the typical linear
dimension at which gravity influences the shape of the fluid
curvature (de Gennes et al., 2010). For water, lc = 0.27 cm
(γ = 70 dynes cm−1, ρ = 1 g cm−3 and g = 980 cm s−2).

To characterize the shape of a meniscus, the pressure differ-
ence (�P ) across a liquid–vapour interface is proportional to

γlv and the fluid curvature as described by the Young–Laplace
(Y–L) equation:

�P = γlv

(
1
R1

+ 1
R2

)
,

where R1 and R2 are the principal radii of curvature at any
point on the interface (Young, 1805; de Laplace, 1806). The
addition of �ρg z to the right-hand side of Y–L equation ac-
commodates the influence of gravity on the meniscus, where
�ρ is the difference in density of the liquid and vapour phases,
g is the acceleration due to gravity and z is the height.

The Y–L equations lack a general analytical solution due to
the involvement of mixed second-order derivatives of the shape
functions describing the menisci (Pozrikidis, 2010). In previ-
ous work on menisci generated by hemispherical geometries
(White et al., 2013), a numerical solution to the Y–L equation
was obtained using the finite element method Surface Evolver
(Brakke, 1996), which solves a complicated, highly nonlinear
parabolic partial differential equation. In these studies, only
the meniscus height and radius measurements were evaluated
and there was no quantitative comparison of the modelled and
observed meniscus curvature. However, the axisymmetric ge-
ometry of these systems is simple enough to reduce the problem
to an ordinary differential equation of a single variable. This
approach is more intuitive than Surface Evolver because the
equation being solved is a height function, which depends on
the radius and provides a solution that can be easily compared
to the observed meniscus gradient.

Axisymmetric forms of the Y–L expression (aY–L) are
reduced to a second-order nonlinear ordinary differential
equation:

�P
γlv

=
(

1
R1

+ 1
R2

)
= 2H = f ′ (r )

r
(

f ′ (r )2 + 1
)1/2

+ f ′′ (r )(
f ′ (r )2 + 1

)3/2 ,

where H is the mean curvature, r is the radial coordinate from
the centre of the cone and f is a one-dimensional function
that represents the position of the surface. With the inclusion
of the gravity term, this equation becomes

2H = f ′ (r )

r
(

f ′ (r )2 + 1
)1/2 + f ′′ (r )(

f ′ (r )2 + 1
)3/2 + ρg f (r ) .

Although �P is in theory measurable, it is the geometrical
properties of the liquid that are observed, specifically, the loca-
tion of the liquid intersections with solid objects (the well edge
and cone) and the liquid volume. At constant temperature,
volume and pressure are related and in static fluidic systems,
�P is in a steady state (constant). Thus, for a fixed volume,
the position of the interface can be given by the Y–L equation,
knowing the liquid–solid intersections. In this way, we were
not confronted with finding the value of �P , rather the spatial
extent of the surface versus its curvature for a fixed volume.
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Fixing the volume of the liquid amounts to imposing a con-
straint on the aY–L equation. This can be done using the
standard method of Lagrange multipliers. Determining the
correct value of the Lagrange multiplier was achieved using
the well-known Augmented Lagrangian method (Hestenes,
1969; Powell, 1978). The numerical solution of the aY–L
equation was achieved using a fourth-order Runga–Kutta
method (Dubin, 2003).

In other systems relevant to the geometry of the fluid cell,
a cylindrical post rising out of a wetting liquid generates ax-
isymmetric menisci commonly seen in wire coating (White &
Tallmadge, 1965) and solder joints (Clanet & Quere, 2002).
The theoretical maximum height for menisci on wetted rods
of radius, r, for θγ = 0, approaches lc as r → � (Tallmadge,
1971). Similarly, such menisci also decay over a length com-
parable to lc (Lo, 1983).

Materials and methods

Fluid cells (Fig. 1), installed in Micro-i cassettes from Menixis
(Dunedin, New Zealand), comprise polytetrafluoroethylene
wells of diameter, 8 mm diameter with a hemispherical base at
depth of 12.1 mm. The wells have a 9 mm outer diameter with
a square edged rim and a nominal wall thickness of 0.5 mm. In
the centre of the well is a borosilicate rod lens (diameter = 3.0
±0.1 mm), with the top end conical, open angle =75±1°and
polished (surface quality 60–40) set to 1.80 mm above the well
edge. For each measurement, the rod and well were swabbed
with 0.1% (w/v) sodium dodecyl sulphate, thoroughly rinsed
with distilled H2O and dried with compressed air before being
filled with fluid. This regime yielded contact angles of 19 ± 2°.

For the microscopy, we used a portable Micro-i imager from
Menixis (Dunedin, New Zealand). This imaging system incor-
porates a 0.8 in. (5.70 mm × 4.28 mm) colour CMOS image
sensor: the pixel size is 2.2 μm × 2.2 μm arrayed in a 2592
× 1944 matrix yielding 5 Megapixel images with an aspect
ratio of 4:3. The board-level camera is fitted with an achromat
doublet lens and a 3-mm-diameter aperture such that the im-
age of the 3-mm-diameter field is projected onto the image sen-
sor at an optical magnification of approximately 1.3:1 with a
working distance of approximately 20 mm. Assuming efficient
optics, a 1.7-μm-long image feature is optically magnified to
2.2 μm and covers approximately one image sensor pixel.
A 24 in. monitor, running at 1920 × 1440 resolution, has
100 pixels per inch; each pixel is approximately 245 μm
long. Projection of the images with this monitor at 1:1 corre-
sponds to a pixel scaling of approximately 111× (245/2.2).
Combined with the optics, this results in a potential 145×
magnification (1.3 × 111). In practice, the image of the
3-mm-diameter rod is scaled onto the computer screen and
adjusted to 300 mm to ensure single FOV coverage when
viewed by a human, corresponding to 100× magnification.
Digital zoom permits further magnification at the image’s
native resolution of 145× magnification with the smallest

Fig. 2. Images of the apparatus. (A) Top view image of the cone (3.0 mm ø)
in a fluid-filled well (500 μL) showing an annular assemblage of buoyant
polystyrene particles (150 μm ø). (B) Profile image of the apparatus in
A showing the cone positioned with its apex (75° open angle) 1.80 mm
above the well edge. (C) Profile image of the cone in A with fluid removed.
(D) Profile difference image of the cone in A created using images (B) and
(C). (E) Enlarged portion of the profile difference image in D showing the
fluid wedge and particle profile.

eggs (20 μm) covering approximately 11 pixels on the images
horizontally. Object trans-illumination occurs via a white
LED under pulsed width modulation control.

For particle microscopy, 150-μm ø polystyrene beads (den-
sity = 1.05 g mL−1, from Sigma-Aldrich, Auckland, New
Zealand) were suspended in NaCl solution adjusted to have
a specific gravity of 1.15. Fresh sheep stool samples were pro-
cessed and independently analysed by a competent technician
using a modified McMaster approach (Presland et al., 2005) to
confirm the presence and identity of helminth eggs. The sam-
ples were utilized in this study within 2 weeks of processing
following dilution 1:13 using saturated NaCl solutions (spe-
cific gravity 1.20). Analyte solutions containing particles or
eggs were mixed by 4–5 rounds of inversion and swirling be-
fore samples were removed by micropipette and applied to the
fluid cell.

For the profile images, a fluid cell was removed from its
cassette and imaged using a jury-rigged stage comprising a
horizontally positioned digital camera, a pedestal for hold-
ing the well and a source of diffuse backlighting to facilitate
edge definition of the meniscus. The images were ported to
the public domain program ImageJ (Rasband, 2008) and cal-
ibrated using the rod diameter (3.0 mm) or the height of the
cone apex above the well edge (1.80 mm) as the internal di-
mensional standard. Measured data were taken from the cali-
brated difference images (e.g. Fig. 2D), created in ImageJ using
the ‘Difference’ option of the ‘Image Calculator’ on images of
the empty well (Fig. 2C) and the filled wells (Fig. 2B), which
enabled the meniscus edges and rod geometry to be clearly
defined.

Cartesian coordinates of the meniscus edge were assigned
in images cropped to have a common origin (Fig. 1C) and
the edge geometry extracted from the calibrated difference im-
ages using the manually operated ‘Multipoint’ tool of ImageJ.
The coordinate data were plotted using Microsoft Excel and
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polynomial functions were fitted by least squares regres-
sion to generate a mathematical representation of the one-
dimensional meniscus gradient. To examine the effect of fluid
volume on meniscus profile, the well was filled using a mi-
cropipette with water to create a static droplet of liquid proud
of the well that was stabilized by pinning at the well edges.
Successive removal of fluid using a micropipette (nominally
10 μL) enabled cumulative volume changes to be made. For
each volume and subsequent volume changes, the profile of
the well was photographed. All experiments were performed
at 22 ± 2 °C.

Assuming a perfect well and rod geometry, calculation
yielded a geometric volume below the line of the well edge
of 455.7 μL. However, the measured diameter of the well at
the top edge was larger (8.25 ± 0.05 mm) than the 8.0 mm
tool diameter used to create the well due to machining
nonlinearities. Recalculation using this well diameter yields
a below-edge volume of 486.2 μL. However, such machined
geometries are likely to yield a tapering well, which suggests
the true volume lies within the range 455–486μL. Determina-
tion of liquid volume above the edge of the well was achieved
by analysis of profile images to mitigate the unreliability of
pipetting microliter volumes of liquid. The volume was cal-
culated by integration of the fitted polynomials and rotating
the two-dimensional slice representing the fluid that exists
between the well edge and the wetted radius about the y-axis
and subtracting the intersecting volume of the cone. The
below-edge volume of the well was determined by subtraction
of the calculated above-edge volume following the addition
of precisely metered water to the well. In a series of replicates
(N=10), a pipette (calibrated by measurement of dispensed liq-
uid mass: 541μL, N =29, SD=2μL) delivered 541μL to yield
a sessile droplet that sat proud of the well edge with its menis-
cus not interrupted by the cone (see Fig. 2A, for example). The
coordinate points from the meniscus edges of all the replicates
were plotted together and a polynomial fitted to the combined
data by least squares regression. The calculated above-edge
fluid volume (67.1 ± 2 μL), subtracted from the loaded mean
total volume, yielded a below-edge volume of 473.9 ± 2 μL
that was mid-way in the calculated range (455–486 μL).

Numerical solutions to the aY–L equation were obtained
for each data set using a standard Runga–Kutta method with
Dirichlet boundary conditions (Dubin, 2003). These condi-
tions were obtained by extrapolating the experimental data to
the intersection points of the interface with the cone and the
well lip. In this system it was necessary to differentiate between
surfaces attached to the cone, and surfaces that encompass it
entirely. The accuracy of the experimental data was measured
by taking the mean of the minimized L2-norms of the distances
between each data point and the numerical solution. For data
points x0, x1, . . . , xn, we have

D =
∑n

i=1 min (P f (r ) − xi P2)
n

,

in which D is the normal Euclidean distance between the mea-
sured and numerically modelled data.

Results and discussion

Empirical observations of rods with conical termini with a 75°
open angle positioned 1.8 mm proud of the well edge yielded
menisci useful for particle accumulation. In Figure 1, the gen-
eral configuration of the fluid cell comprised a volumetric well
and a centrally located rod with a conical terminus. In the top
view (Fig. 1A), the conical terminus of the rod is viewed or-
thogonally and in operation is trans-illuminated from its base.
The transverse cross-section shown in Figure 1(b) shows the
key physical variables of the cell. Figure 1(C) shows the key
measured attributes due to the physical–chemical properties
of the system. Note that in the schematic of Figure 1, the base
of the cone is diagrammatically raised more than in the exper-
imental system.

In the top view image of the trans-illuminated cone wet-
ted by fluid containing buoyant polystyrene microspheres
(Fig. 2A), the central dark region is unwetted and shows a
point of high intensity corresponding to the apex of the cone.
Although liquid extends from the circular wetting line to the
well edge (not shown), only the portion from the wetting line
to the circumferential boundary of the rod edge constitutes
the effective operational trans-illuminated area of the system.
Within this annular zone, the particles beach on the rod sur-
face in a circular configuration show a tendency to cluster
and can hinder each other. Gentle vibration can disrupt the
clustering and cause the particles to reassemble into differ-
ent configurations, indicating that particle accumulation can
be frustrated by the appearance of metastable equilibria. It is
likely that the motion of these isolated particles was dominated
by the one-dimensional meniscus gradient rather than its two-
dimensional curvature because the particles are spherical and
so coupled to the gradient by the induced monopole due to the
buoyancy of the particles (Vassileva et al., 2005).

In the top view image, the morphological characteristics of
the meniscus are not immediately apparent. However, profile
images of the liquid-filled well (Fig. 2B) clearly show the static
meniscus gradient. The liquid-wetted cone appears distorted
in the images (Fig. 2B) due to optical lensing by the liquid.
Profile difference images created from the void (Fig. 2C) and the
liquid-filled (Fig. 2B) wells mitigate the optical distortions and
have the appearance of a transverse cross-section (Fig. 2D).
Inspection of the difference images reveals clearly the triple
point phase boundary of the wetting line, fluid rise height and
unwetted diameter.

Particles seen in the top view image (Fig. 2A) can occasion-
ally be resolved in the profile difference images (Figs. 2D,E) and
suggest a meniscus gradient induced by the particles. These
observations indicate that geometric bridging by the particles
between the cone surface and the liquid–vapour interface lim-
its the distribution of particles and the annular liquid wedge
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Fig. 3. Top view image of the apparatus showing the cone (3.0 mm ø)
in a fluid-filled well. Marked in the figure are: d, debris; b, air bubbles; N,
Nematodirus; S, Strongyle eggs. The scale bar (lower left) is 200 μm.

morphology accounts for the circular distributions particles
at a common radius. These also suggest a limit on the size
of particle that can enter the wedge. The minimum dimen-
sion of this gating area is shown in Figure 1(C) as the length
Gm, which can be found by minimizing the distance func-
tion from a general point on the meniscus to the base of the
cone.

In Figure 3, helminth ova can be seen in top view images
of the cone when the fluid cell contains liquid prepared from
the stool of sheep infected with Nematodirus and Strongyle
parasites. The Nematodirus eggs can be easily distinguished
from opaque debris and spherical air bubbles as the translu-
cent ovoid structures (approximately 200 × 70 μm) that
contain a dark centre. Smaller Strongyle eggs are also visible
(60 × 30 μm). The equilibration of the eggs into an annular
configuration is presumably restricted by mechanical barriers
due to the confounding debris in stool. The staining of the
fluid is evident from the change in colour as a function of fluid
depth between the centre and circumferential edge of the
cone. It is likely that the motion and equilibrium positioning
of the helminth eggs will be influenced by the meniscus
two-dimensional curvature due to the induced quadrapole of
ellipsoid geometries (Cavallaro et al., 2011; Botto et al., 2012).
In Figure 3, the cone apex and wetting line are resolved, but
the unwetted part of the cone is much smaller than that shown
in Figure 2(A) and the effective operational area of the system
encompasses almost the entire area of the cone surface.

To analyse the fluidic structure, we acquired profile images
of the system containing different volumes of liquid and, using

images of the unfilled system, generated their accompanying
difference images (Fig. 4). We manually extracted the inter-
facial liquid–vapour gradient from selected difference images
into a common (x, y) coordinate system (see Fig. 1C) and then
plotted the data (Fig. 5). Polynomials were fitted to the data
and using calculus we determined the volume of liquid above
the well edge.

The data extracted from the images (Fig. 4) and from plots
(Fig. 5) are summarized in Table 1. From the images, the gross
morphology of the meniscus at above-edge volumes >38 μL
takes on a distinctly convex shape (Figs. 4A–H), whereas at
volumes <18 μL the shape is concave (Figs. 4M–P). The inter-
vening volumes can be characterized by a transition in which
both convex and concave features are simultaneously present
in the curvature (Figs. 4I–L) and presumably separated by a
point of inflection, which shifts towards the well edge with
the incremental reduction in volume. These observations are
consistent with the previously observed system based on a
hemispherical topology (White et al., 2013).

In previous studies of hemispherical rod geometries using
Surface Evolver, only fluid–solid intersection points (meniscus
height and unwetted radius) were compared between mea-
sured and modelled data (White et al., 2013), here we extract
the meniscus gradient and quantitatively compare it to the
computed model.

We calculated solutions for the aY–L with and without the
accompanying gravity term. We used experimentally mea-
sured meniscus fluid–solid intersection points for the equation
variables and then compared the computed solutions with the
meniscus gradient data extracted from the difference images
(Fig. 5 and Table 1). The mean of the distances between the
aY–L solution that included gravity and the experimental data
were calculated to be in the range 0.004–0.005 mm (Table 1).
These comparisons show that numerical solutions to the
aY–L equation closely reflect the experimentally determined
meniscus gradient and suggest only minor errors in meniscus
edge plotting. The mean of the distances between the aY–L
solution without the gravity term and the experimental data
were calculated to be in the range 0.05–0.004 mm (Table 1)
and showed a maximum deviation in the order of 1%. These
showed that there was only a minor but increasing effect of
gravity on the meniscus gradient with increasing volume.

It is evident from Figure 5 that edge pinning becomes im-
portant at volumes >38 μL because the visible, above-edge
meniscus extends to the vicinity of the well edge and the droplet
starts to bulge and adopt a convex morphology. As the con-
tact angle remains constant, the triple point moves so that the
liquid volume minimizes its surface area to accommodate the
volume change. Further analysis of the data in Table 1 shows
that the length of the unwetted radius responds predictably
to the change in volume over the range 0–50 μL, permitting
volumetric assessment from the top view images by measure-
ment of the unwetted portion as previously shown in White
et al. (2011).
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Fig. 4. Profiles of a wetted cone and their accompanying difference images with decreasing above-edge fluid volumes (μL): (A, B) 68, (C, D) 59, (E, F) 49,
(G, H) 39, (I, J) 28, (K, L) 18, (M, N) 10 and (O, P) 2.

In the analysis of the factors governing the meniscus, the
distance between the base of the cone and well edge was
0.25 cm. This separation is below the capillary length of
water (lc =0.27 cm) and meniscus gradients shorter than
the capillary length should be unaffected by gravity. For
above-edge volumes of fluid that are not obviously pinned by
the well edge, the fluidic structure remains below lc. However,
as fluid volume increases, the meniscus gradient lengthens
as the liquid both rises up the cone and becomes pinned at the
well edge. The aY–L solution that contains no gravity term
demonstrates the influence of gravity quantifiably by the

measured deviation of the modelled from experimental values
as expressed by the mean difference between them (Table 1).

For volumes >58 μl, sufficient liquid volume causes the
meniscus to breach the apex of the cone and flattening of
the liquid is observed. These systems are undesirable for parti-
cle microscopy because particle beaching does not occur and
the system is prone to shear indicating decreasing stability.
This propensity to shear underpins an unmetered fluid load-
ing approach (White et al., 2013) and shows that at these
volumes the governing dynamics of the droplet are dominated
by gravity.

C© 2014 The Authors
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Table 1. Summary of meniscus data and calculation.

Volm (μl) Radm (mm) hm (mm) u (mm) a b c m D−g (mm) D+g (mm)

68.1 4.12 2.28 – −0.0404 0. 0839 −0.2028 2.33 0.039 0.005
57.6 4.12 2.01 – −0.0308 0.0468 −0.1599 2.06 0.031 0.005
48.8 4.10 1.79 0.19 −0.0282 0.0566 −0.1950 1.83 0.030 0.005
38.6 4.10 1.70 0.21 −0.0230 0.0662 −0.3079 1.73 0.015 0.005
28.4 4.04 1.63 0.24 −0.0238 0.1220 −0.5070 1.63 0.012 0.005
18.2 3.98 1.24 0.54 −0.0280 0.2002 −0.7509 1.56 0.009 0.005
9.5 3.74 0.84 0.83 −0.0351 0.2978 −1.0304 1.52 0.007 0.004
1.9a 2.70 0.56 1.05 0.2449 −1.2247 1.54 0.005 0.004

Volm is the meniscus volume above the well edge. Radm is the radius of the meniscus at the well edge.
hm is the height of the meniscus. u is the maximum radius of the unwetted portion of the cone. a, b and c are the coefficients of x3, x2 and x, respectively,
and m is the x-axis intercept for the polynomials fitted to the experimental data. D−g is the mean distance between the experimental data and the
Young–Laplace equation calculated without the gravity term. D+g is the mean distance between the experimental data and the Young–Laplace equation
calculated with the gravity term.
aFitted to second-order polynomial.

Fig. 5. Plots of meniscus gradient. The coordinate data of the menisci
taken from the images in Figure 2 (black points); fitted polynomials to the
coordinate data (dotted line); axisymmetric Young–Laplace calculations
without gravity term (red solid line); and the underlying cone (black solid
line). The calculated above-edge volumes in descending order (μL): 68,
59, 49, 39, 28, 18, 10 and 2.

These data also show that for fluid volumes <50 μL, where
the cone emerges through the meniscus, the governing dy-
namics of this system are dominated by surface tension. In
these configurations, the gradient of the meniscus is steeper
and the fluid wedge thinner due to the concavity, which is
presumably advantageous for particle accumulation. Further-
more, it can be seen from the above-edge well volumes that
the range of 20–50 μL would confer practically useful FOV for
parasite egg imaging because the annular wetted fraction of
the 3-mm-diameter FOV (7.07 mm2) corresponds to approxi-
mately 0.55–0.98, respectively.

In comparison to previous studies of the meniscus fluid–solid
intersection points on hemispherical rod geometries (White
et al., 2013), we have demonstrated an intuitive mathematical
analysis of the meniscus gradient. We have introduced a new
rod geometry based on a cone and quantified the accuracy
of our calculated meniscus gradients by measuring their
deviation from the gradients extracted from profile images of
menisci. We have included an analysis of the effect of gravity
on the menisci gradients, which was shown to be minor.

Conclusions

Conically terminated rods configured to emerge through a
liquid–air interface and create a meniscus, exhibit a number of
advantages over previously studied hemispherical rods. These
include simplified and less expensive manufacturing and a
wide variety of geometric options. From the experimental ob-
servations and the aY–L calculations, the factors governing
meniscus formation and liquid wedge morphology within the
effective operational parameters of the fluid cell are dominated
by the geometric configuration of the system, the volume of
applied liquid and the surface tension of the fluid.

For quantitative microscopic applications, the well depth is
independent of the meniscus and can be modulated to optimize
the analytical liquid volume. These properties do not preclude
the application of narrower cells, but do suggest limits on the
effectiveness of much wider geometries due to the constraints
imposed by the liquid surface tension. It follows that different
fluids may require optimization and calibration because of the
fluid cell dependency on surface tension.

Meniscus generating fluid cell structures of the type pre-
sented here are useful for single FOV microscopy of parasite
eggs from stool. With these methods, future studies will be
focused on testing other simple and more sophisticated ge-
ometries and further understanding the complex interfacial
chemistry of fluidized stool for diagnostic microscopy.
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